Kinetic Processes of Mantle Minerals
نویسندگان
چکیده
This dissertation discusses the experimental results designed to constrain the processes of MORB generation. The main focus of this study is to investigate the location and the related processes of the transformation boundary from spinel to garnet peridotite facies at subsolidus conditions, because the presence of garnet in melting residues has significant influence to the conclusion drawn from geochemical/geophysical observations. Using an approach that monitors the rate of reaction progresses, the experimental results confirmed the presence of a region that garnet and spinel coexist in peridotite compositions. The trace element distribution among the product phases (opx and cpx) subsequent to the garnet breakdown reaction is in disequilibrium, due to the differences of diffusivity between major and trace elements. The presence of disequilibrium distribution in nature may be used to infer time scales of geodynamic processes. Diffusion coefficients of Al in diopside are experimentally determined, and used for modeling the equilibration of major elements in pyroxene during MORB genesis. In summary, this dissertation contributes two major inferences: the location of the transformation boundaries of the garnet-spinel peridotite; the presence of disequilibrium trace elements distribution with equilibrium major elements distribution in mantle pyroxenes.
منابع مشابه
Petrogenesis of mantle peridotites from the South of Jazmourian, Makran accretionary prism, Iran
Mantle peridotites exposed in south Jazmourian comprise of lherzolite and porphyroclastic Cpx-bearing harzburgite in the lower part with chromitite lenses in the upper parts. Petrography and microprobe studies shows evidence of melt-peridotite interactions; post melting processes and subsolidus interactions, which has been associated with appearance of two generations of deformed primary pyroxe...
متن کاملDemagnetization by Basin-forming Impacts on Early Mars: Contributions from Shock, Heating and Excavation
Introduction: When a large hypervelocity impact occurs on a planetary body such as Mars, the kinetic energy of the impactor is partitioned primarily into 1) kinetic energy of the planetary crust and mantle as they deform and flow in response to the impact, 2) heating, melting and vaporization of impactor, crust and mantle material and 3) shockwaves that travel throughout the entire volume of th...
متن کاملMantle Rocks and Diamond-Associated Phases: Role in Diamond Origin
The components of rock-forming and accessory minerals of the upper mantle, transition zone and lower mantle rocks have been involved into the processes of diamond genesis. Through their dissolving in primary carbonate melts, the mantle minerals have turned into components of the parental silicate-(±oxide)carbonate-carbon melts-solutions for diamonds and co-crystallized paragenetic minerals. The...
متن کاملMantle Rocks and Diamond-Associated Phases: Role in Diamond Origin
The components of rock-forming and accessory minerals of the upper mantle, transition zone and lower mantle rocks have been involved into the processes of diamond genesis. Through their dissolving in primary carbonate melts, the mantle minerals have turned into components of the parental silicate-(±oxide)carbonate-carbon melts-solutions for diamonds and co-crystallized paragenetic minerals. The...
متن کاملMantle Rocks and Diamond-Associated Phases: Role in Diamond Origin
The components of rock-forming and accessory minerals of the upper mantle, transition zone and lower mantle rocks have been involved into the processes of diamond genesis. Through their dissolving in primary carbonate melts, the mantle minerals have turned into components of the parental silicate-(±oxide)carbonate-carbon melts-solutions for diamonds and co-crystallized paragenetic minerals. The...
متن کامل